Graph Kernels via Functional Embedding

نویسندگان

  • Anshumali Shrivastava
  • Ping Li
چکیده

We propose a representation of graph as a functional object derived from the power iteration of the underlying adjacency matrix. The proposed functional representation is a graph invariant, i.e., the functional remains unchanged under any reordering of the vertices. This property eliminates the difficulty of handling exponentially many isomorphic forms. Bhattacharyya kernel constructed between these functionals significantly outperforms the state-of-the-art graph kernels on 3 out of the 4 standard benchmark graph classification datasets, demonstrating the superiority of our approach. The proposed methodology is simple and runs in time linear in the number of edges, which makes our kernel more efficient and scalable compared to many widely adopted graph kernels with running time cubic in the number of vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality reduction for speech emotion features by multiscale kernels

To achieve efficient and compact low-dimensional features for speech emotion recognition, this paper proposes a novel feature reduction method using multiscale kernels in the framework of graph embedding. With Fisher discriminant embedding graph, multiscale Gaussian kernels are used in constructing optimal linear combination of Gram matrices for multiple kernel learning. To evaluate the propose...

متن کامل

Kernels on Attributed Pointsets with Applications

This paper introduces kernels on attributed pointsets, which are sets of vectors embedded in an euclidean space. The embedding gives the notion of neighborhood, which is used to define positive semidefinite kernels on pointsets. Two novel kernels on neighborhoods are proposed, one evaluating the attribute similarity and the other evaluating shape similarity. Shape similarity function is motivat...

متن کامل

Unfolding Kernel embeddings of graphs: Enhancing class separation through manifold learning

In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behaviour that suggests that lon...

متن کامل

Heat Kernels, Manifolds and Graph Embedding

In this paper, we investigate the use of heat kernels as a means of embedding graphs in a pattern space. We commence by performing the spectral decomposition on the graph Laplacian. The heat kernel of the graph is found by exponentiating the resulting eigensystem over time. By equating the spectral heat kernel and its Gaussian form we are able to approximate the geodesic distance between nodes ...

متن کامل

A Random Walk Kernel Derived from Graph Edit Distance

Random walk kernels in conjunction with Support Vector Machines are powerful methods for error-tolerant graph matching. Because of their local definition, however, the applicability of random walk kernels strongly depends on the characteristics of the underlying graph representation. In this paper, we describe a simple extension to the standard random walk kernel based on graph edit distance. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.5214  شماره 

صفحات  -

تاریخ انتشار 2014